Three-Dimensional Defect Characterization: Focused Ion Beam Tomography Applied to Tin Sulfide Thin Films

نویسندگان

  • Amanda Youssef
  • Tonio Buonassisi
چکیده

Porosity is postulated to be one of the reasons for the low efficiency of tin sulfide-based devices. This work is a preliminary investigation of the effects of two film growth parameters deposition rate and substrate temperature on porosity. We employ the focused ion beam tomography technique to characterize and quantify porosity in tin sulfide thin films. We then generate 3D reconstructions of pores inside milled volumes from the films and quantify pore volumes. To explain the results, we employ nucleation theory and develop two different models: (a) a thermodynamic model that assumes pores form primarily from an effect known as "selfshadowing," whereby growth-rate anisotropy results in some grains that grow faster than their neighbors, and (b) a kinetic model that assumes a diffusion-driven process of void formation. We show that both models qualitatively support the experimental results, providing insight into process-structure relations that may improve film quality during growth. Thesis Supervisor: Tonio Buonassisi Title: Associate Professor of Mechanical Engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Pure and Antimony Doped SnO2 Thin Films Prepared by the Sol-Gel Technique

Pure and antimony doped SnO2 thin films have been prepared by the sol-gel dip coating technique on glass substrate using starting material SnCl2.2H2O as a host and SbCl3 as a dopant. Our experimental results revealed that, the quality of the coated films on the glass depends on process parameters. The effect of annealing temperature, dipping numbe...

متن کامل

Preparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices

In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and  silicon  substrates  using  single  ion  beam  sputtering  technique.  The  physical  and  chemical properties  of  prepared  films  were  investigated  by  different  characterization  technique.  X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...

متن کامل

Effect of Gas Ratio on Tribological and Corrosion Properties of Ion Beam Sputter Deposited TiN Coatings

Titanium nitride thin films were grown on 304 stainless steel substrates at various nitrogen/argon flow ratios by ion beam sputtering (IBS) technique. The current research is a follow up study on the influence of gas ratio on structural and corrosion properties in the TiN coated 304 stainless steel. Film structural identification of phases was performed using X-ray diffractometry (XRD). Sca...

متن کامل

Preparation and Characterization of WO3 Electrochromic Films Obtained by the Sol-Gel Process

Tungsten trioxide (WO3) films have been coated on indium thin oxide (ITO) conductive glass substrate, using aqueous solution of peroxotungstic acid (PTA) by the sol-gel dip coating method. X-ray diffractometery (XRD) analysis confirmed monoclinic and triclinic structure for the film and powdered WO3 respectively. Fourier transforms infrared spectroscopy (FT-IR) exhibit...

متن کامل

A Focused Ion Beam Specimen Preparation Method to Minimize Gallium Ion Concentration in Copper Atom-Probe Tomography Specimen Tips

Atom-probe tomography (APT) is a quantitative technique that permits three-dimensional (3-D) spectroscopic characterization of interfaces and other nanometer-scale features within a material. Specimens for atom-probe tomography (APT) analysis of semiconductor devices and nanostructured materials are typically fabricated employing a focused ion beam (FIB) instrument [1 3] or a dual-beam FIB inst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014